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Ascertainment Adjustment: Where Does It Take Us?
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It is commonly assumed that the parameter estimates of a statistical genetics model that has been adjusted for
ascertainment will estimate parameters in the general population from which the ascertained subpopulation was
originally drawn. We show that this is true only in certain restricted circumstances. More generally, ascertainment-
adjusted parameter estimates reflect parameters in the ascertained subpopulation. In many situations, this shift in
perspective is immaterial: the parameters of interest are the same in the ascertained sample and in the population
from which it was drawn, and it is therefore irrelevant to which population inferences are presumed to apply. In
other circumstances, however, this is not so. This has important implications, particularly for studies investigating
the etiology of complex diseases.

Introduction

Over the past few decades, the statistical genetics liter-
ature has been a fertile source of debate about the merits,
drawbacks, and feasibility of a number of different ap-
proaches to the problem of adjusting for ascertainment
(Cannings and Thompson 1977; Elston and Sobel 1979;
Lalouel and Morton 1981; Ewens and Shute 1986;
Hodge 1988; Elston 1995; Vieland and Hodge 1995).
However, despite the theoretical depth and breadth of
this debate, and regardless of the method one may
choose to use in a given situation, there has been little
discussion of the fundamental question, What do ascer-
tainment-adjusted parameter estimates actually esti-
mate? Indeed, it may seem surprising that the question
needs to be asked at all.

The term “ascertainment” refers to a mode of sam-
pling that depends on the outcome that we wish to
analyze as a dependent variable. It is commonly as-
sumed that the parameter estimates of a statistical
model that has been adjusted for ascertainment will es-
timate parameters in the general population from which
the ascertained subpopulation was drawn. However, as
this paper will show, this assumption is true only under
restricted circumstances—only when parameters are the
same in the ascertained subpopulation and in the gen-
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eral population is it safe to assume that inferences refer
directly to the general population. Although such cir-
cumstances are not uncommon in statistical genetics,
they are becoming less common as we have fitted ever
more complicated models to data pertaining to complex
traits. We first recognized the serious interpretational
problems that this can cause when we found that pa-
rameter estimates in a variance-component model fitted
to simulated ascertained data could be quite different
from simulated parameter values, even when full ac-
count had been taken of the ascertainment process.
However, as we will show, this issue has much broader
implications, particularly for studies investigating the
etiology of complex diseases.

Statistical Inference from Ascertained Data

We start by introducing some terminology and notation.
We draw a clear distinction between the true value (m)
of a parameter of interest and its estimated value ( ).m̂

We accept that the descriptor “true” applied to a pa-
rameter value is redundant—nevertheless, it can usefully
serve to emphasize the contrast between a parameter and
its estimate, and we deliberately adopt this tautology
when we feel it to be helpful. We also discriminate be-
tween an estimate that has been appropriately adjusted
for ascertainment ( ) and one that has not ( ). Finally,#ˆ ˆm m

we distinguish between the true value of a parameter of
interest in a general population (mP) and the true value
of the corresponding parameter (mA) in an ascertained
sample drawn from that general population. Through-
out the paper, we use the terms “ascertained sample,”
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“ascertained subpopulation,” and “ascertained data set”
interchangeably.

There are many circumstances in which —#m̂ ( mA P

that is, situations in which a parameter estimate based
on an ascertained subpopulation without adjustment
for the ascertainment provides a biased estimate of the
corresponding true parameter in the general population
from which the sample was drawn. This is usually ex-
plained by Fisher’s “statistical commonplace” that “the
interpretation of a body of data requires a knowledge
of how it was obtained” and his appropriate concern
about methods “advocated with entire disregard of the
conditions of ascertainment” (Fisher 1934, p. 13). In
other words, a good estimator must take appropriate
account of the survey sampling design. Unfortunately,
because of the critical importance of ascertainment bias,
it is easy to assume that if you do take appropriate
account of the ascertainment, must then provide am̂A

good estimate of mP. However, this might not be so if
the true parameter values themselves differed between
the general population and the ascertained sample:

.m ( mP A

It is central to the thesis of this article that the true
value of a parameter of interest can differ between an
ascertained sample (mA) and the general population from
which that sample was drawn (mP). This concept there-
fore warrants further exploration.

Nonrandom ascertainment implies the relative ov-
ersampling of a subgroup of the general population that
is “extreme” with respect to the trait of interest. For
example, in the simplest case, one may restrict sampling
to families with at least one affected member. Relative
oversampling implies a systematic underrepresentation
of the complementary subset of the population—that
is, families with no affected members. This has two
important consequences. First, it is a basic tenet of pop-
ulation science that the systematic loss of a subgroup
with unusual outcomes will lead to biased estimation.
This can be illustrated well by a simple example. Let
us consider a disease for which everybody in the pop-
ulation has exactly the same true probability of affection
(p). If attention is restricted to sibships of size two, and
we define , the expected proportions of sib-q p 1 � p
ships with zero, one, and two affected members in the
general population are q2, 2pq, and p2, respectively. If
we now ascertain all sibships with at least one affected
member, the expected proportions of sibships with zero,
one, and two affected members in the ascertained sam-
ple will be 0, , and . A na-2 2 22pq/(2pq � p ) p /(2pq � p )
ive analysis that takes no account of the ascertainment
will generate a biased estimator with expectation

rather than p. This2 2 2(pq � p )/(2pq � p ) p p/(1 � q )
is classical ascertainment bias. It arises solely because
the sibships with no affected members are missing.
However, the only difference between the sibships with

no affected members and those that were ascertained is
that, by chance, they had different outcomes. Crucially,
their true or intrinsic risk of developing the disease in
the first place was exactly the same. This would not be
true, however, in a population exhibiting marked sub-
ject-to-subject variation in the true risk of affection. In
this setting, ascertainment can be shown to have an
important additional effect. Sibships with no affected
members are still discarded (regardless of their level of
intrinsic risk), but this now leads to the preferential loss
from the sample of sibships with a low intrinsic risk of
affection. This is because a smaller proportion of these
sibships will have an affected member. At the same time,
families at a high intrinsic risk are relatively oversam-
pled. This has the effect of making the mean intrinsic
risk in the ascertained sample higher than it was in the
general population prior to ascertainment. The key issue
here is that it is the distribution of true or intrinsic risk
in the ascertained sample that is disturbed by this pro-
cess; it has nothing to do with biased estimation. In
other words, if m is a parameter reflecting marginal
(overall) risk, this is a situation in which . Inm ( mP A

the light of this, a fundamental question arises: if true
parameter values differ between an ascertained sample
and the general population from which it was drawn,
will an ascertainment adjusted estimate based on the
ascertained sample ( ) estimate mP or mA?m̂A

The current article examines this question by pre-
senting two quite different practical examples. The first
addresses the simple but “classical’ problem of esti-
mating the prevalence of a disease in a sample of sib-
ships collected under complete ascertainment. The sec-
ond reflects our initial introduction to the problem and
addresses the prediction of parameter estimates in a var-
iance-component model fitted to simulated ascertained
data. We believe that these examples help to answer the
question we pose and show that, if one ignores this
issue, the confusion of perspectives that can arise can
have a serious impact on the interpretation of ascer-
tained data, particularly in studies of complex diseases.

Example 1: Estimating Prevalence in Sibships of Size
Three, Sampled under Complete Ascertainment

We consider a population of sibships each of size three.
Our aim is to estimate the prevalence of a hypothetical
binary trait (D). We start by drawing an ascertained
sample from the original population. Sibships are as-
certained if at least one member is affected. Ascertain-
ment is “complete” in the sense of Fisher (1934) and
Elston (1995), and all sibships with at least one affected
member are therefore ascertained. We suppose the sib-
ships fall into four distinct “risk” strata with a different
true prevalence in each stratum. Other than the differing
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Table 1

Population Characteristics for Example 1

Stratum (j)

No. of
Sibships

(njP)
No. of

Children

True Prevalence
of Disease

(pj)

No. of Affected
Childrena

(ajP)

1 4,800 14,400 .06 864
2 1,600 4,800 .12 577
3 800 2,400 .24 576
4 800 2,400 .48 1,152

Total 8,000 24,000 .132b 3,169

a Derived as in table 2, column 8.
b ..132 p 3,169/24,000

risk associated with stratum membership, we assume
that D has no other etiological determinants of rele-
vance. Conditional on stratum membership there is,
therefore, no residual correlation between siblings and
no correlation between sibships.

Table 1 details the population distribution of sibships
and children by stratum (second and third columns) and
the true prevalence in each stratum (fourth column).
Table 2 details the composition of the ascertained data
set. These data are “ideal” in the sense of Li and Mantel
(1968): the numbers of sibships with zero, one, two,
and three affected members in each stratum are, apart
from rounding errors, the number that would be “ex-
pected” given the true stratum-specific prevalences. We
believe this to helpfully facilitate interpretation.

We start by estimating the prevalence of disease in
each stratum. The raw ascertained data to be analyzed
are represented by the boldface values in table 2. We
denote the true stratum-specific prevalences p1...p4 and
their estimators ... or ... , depending on the es-ˆ ˆ ˜ ˜p p p p1 4 1 4

timation method used (see below). The number of sib-
ships with k affected siblings in stratum j is denoted njk.
The total number of sibships in stratum j in the ascer-
tained sample is denoted njA ( ), andn p n � n � njA j1 j2 j3

the corresponding number in the original population njP

( ). The total number of indi-n p n � n � n � njP j0 j1 j2 j3

viduals in stratum j in the ascertained subpopulation is
denoted mjA ( ), and the correspondingm p 3 # njA jA

number of affected individuals is ajA [a p (1 #jA

]. Under complete ascertain-n ) � (2 # n ) � (3 # n )j1 j2 j3

ment, the total number of affected individuals in the
original population is the same as that in the ascertained
sample: .a p ajP jA

We start by considering stratum 1 and use the data
in table 2 to estimate the stratum-specific prevalence

using the Li-Mantel estimator (1968):ˆ ˆ(p ) p p (a �1 j jA

. In this particular case, ˆn )/(m � n ) p p (864 �j1 jA j1 1

.763)/(2,439 � 763) p 0.0603
The logic of the estimator is outlined in Appendix A.

Using the variance formula (Appendix A) described by
Li and Mantel (1968), the asymptotic standard error
for the estimated prevalence may be calculated to be
0.00802, and an asymptotic 95% confidence interval
(CI) is .0.0603 � 1.96 # 0.00802 p (0.0446–0.0760)

As an alternative, an ascertainment-adjusted estimate
of p1 can also be obtained using a statistical model that
uses an appropriately conditioned likelihood. In es-
sence, the unconditional binomial likelihood can be di-
vided by the probability that a sibship would have been
ascertained given the parameters of the model (Elston
and Sobel 1979). The simple annotated Gibbs sam-
pling–based WinBUGS (Spiegelhalter et al. 2000) code
detailed in Appendix B fits just such a model. On the
basis of the WinBUGS analysis, the estimated prevalence

in stratum 1 is 0.0612 with 95% credible interval˜(p )1

(0.046–0.078). This estimate, which is based on the
posterior mean, is very similar to the estimate and 95%
CI obtained using the Li-Mantel estimator. Formally, a
95% credible interval is a Bayesian construct reflecting
a range of values that encompasses 95% of the posterior
density (Lindley 1965). When prior assumptions are
vague, it has close theoretical links with a conventional
95% confidence interval (Burton 1994).

Table 3 details the corresponding results for all four
strata and contrasts the ascertainment adjusted esti-
mates of stratum-specific prevalence with those ob-
tained without adjustment. A number of comments are
warranted. (1) As would be expected, the estimates of
stratum-specific prevalence obtained without adjust-
ment for ascertainment are biased. (2) The ascertain-
ment-adjusted estimates (and their confidence/credible
intervals) based on the Li-Mantel estimator and the
Gibbs sampling model are very similar. Furthermore,
the point estimates in all strata are very close to the true
prevalences. (3) The ascertainment-adjusted stratum-
specific estimates of prevalence may be viewed as ap-
plying either to the original population or to the ascer-
tained subpopulation. This is because the true
prevalence in each stratum is unaffected by the process
of ascertainment; it is the distribution of sibships across
strata that is modified by the ascertainment. In other
words, the true prevalence (pj), which reflects the risk
to which the sibships in stratum j were actually exposed,
is exactly the same in stratum j in the original popu-
lation as that in stratum j in the ascertained sample.
Those sibships in stratum j that had one, two, or three
affected members were exposed to precisely the same
level of real risk as those that had no affected members:
it is just that some siblings were “unlucky” and some
were not.

Therefore, when one is trying to estimate the value
of a parameter whose true value is unaffected by the
ascertainment process, one can safely infer that the find-
ings of an analysis that has been appropriately adjusted
for ascertainment apply equally well to the original pop-
ulation and to the ascertained sample. But now let us
imagine that stratum membership had been unobserv-
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Table 2

Characteristics of Ascertained Data Set for Example 1

STRATUM

NO. OF SIBSHIPS WITH TOTAL NO. OF

0 Affected
Children

(nj0)

1 Affected
Child
(nj1)

2 Affected
Children

(nj2)

3 Affected
Children

(nj3)

Sibships
Ascertained

(njA)

Children
Ascertained

(mjA)

Affected Children
Ascertained

(ajA)

1 3,987 763 49 1 813 2,439 864
2 1,090 446 61 3 510 1,530 577
3 351 333 105 11 449 1,347 576
4 112 312 288 88 688 2,064 1,152

Total 5,540 1,854 503 103 2,460 7,380 3,169

able. In that case, the only information in the ascer-
tained data set (see bold italicized values in table 2) is
that there are 1,854 sibships with one member affected,
503 with two members affected, and 103 with three
members affected. If we now estimate the “overall”
prevalence using the Li-Mantel estimator, we obtain an
estimate of 0.238 (95% CI 0.224, 0.252), and, if we
use the WinBUGS model, we obtain an estimate of
0.245 (95% CI 0.234, 0.259). The key question is
whether these estimates pertain to the true overall prev-
alence in the ascertained sample (pA) or to that in the
original population (pP).

To answer this question, we first need to define “over-
all” prevalence. Most simply, it may be viewed as being
the marginal mean of the true stratum-specific preva-
lences weighted by the number of individuals in each
stratum:

4� (p # n )1 j jA
p p p 0.223 ,A 4� n1 jA

4� (p # n )1 j jP
p p p 0.132 .P 4� n1 jP

The estimates we obtain using the Li-Mantel estimator
and the Gibbs sampling model are both based on anal-
yses conducted on the ascertained data set, and one
might therefore anticipate that they should reflect the
marginal distribution of stratum membership in the as-
certained sample, not that in the original population. It
would therefore seem reasonable to expect that the
overall estimates of prevalence we obtain should pertain
to the ascertained sample and not to the original pop-
ulation. The empirical evidence is clearly consistent with
this surmise: the two estimates 0.238 and 0.245 are
much closer to pA (0.223) than to pP (0.132). Further-
more, over a wide variety of simulated data sets, we
have found this example to be typical and have found
no case in which the empirical evidence is inconsistent
with the conjecture.

This having been said, the analysis is poorly specified:

no account has been taken of the real heterogeneity of
risk arising from the effect of the unobserved strata. It
could therefore be argued that, in this situation, the
basic concept of “overall” prevalence is flawed. In es-
sence, we are taking the weighted mean of a series of
prevalence estimates that are, in actuality, different from
one another. Although, at one level, this is true, the
reality is that when we deal with complex diseases it is
likely that many of the parameters that we estimate in
our day-to-day work are marginal expectations of stra-
tum-specific parameters of this type—it is just that, most
of the time, we do not know enough about the etio-
logical determinants to resolve the strata. Given that
this is so, it is reassuring that, despite the extreme het-
erogeneity of the stratum-specific prevalences in the
ideal example we have constructed and the marked dif-
ference between the marginal distribution of strata in
the ascertained sample and the original population from
which it was drawn, both the classical and Gibbs sam-
pling estimators appear to provide good approxima-
tions to the true “overall” prevalence in the ascertained
subpopulation. In the complete absence of knowledge
of the determinants that generate a risk-stratification
structure, one can ask for no more than a statistic that
provides an acceptable summary across the strata.

Example 2: Predicting the Parameter Estimates in a
Variance-Component Model Fitted to Simulated
Ascertained Data

For our second example, we turn to the practical prob-
lem that first drew our attention to the issues we discuss
in this article. That is, we address the apparent bias of
parameter estimates relative to simulated population val-
ues that we found when we attempted to fit ascertain-
ment-adjusted genetic variance-component models to
simulated ascertained data. We will assume the following
model of disease (D) generation:
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Table 3

Stratum-Specific Prevalences and Their Estimates

Stratum

True Stratum-Specific
Prevalence of Disease

(pj)

Estimated Prevalence
without Ascertainment

Adjustmenta ( )#p̂j

Ascertainment Adjusted
Estimate Using the Li-
Mantel Estimatorb ( )p̂j

(95% CI)

Ascertainment Adjusted
Estimate Using Gibbs

Samplingc ( ) (95% CI)p̃j

1 .06 .3542 .0603 (.045–.076) .0612 (.046–.078)
2 .12 .3771 .1210 (.095–.147) .1222 (.097–.150)
3 .24 .4276 .2396 (.206–.273) .2402 (.207–.275)
4 .48 .5581 .4794 (.452–.506) .4798 (.452–.506)

a From the last two columns of table 2.
b See Appendix A.
c See Appendix B.

Th p a � b z � C ,ij ij i

2C ∼ Normal(0,j ),i C

logit(m ) p h , andij ij

D ∼ Bernoulli(m ) .ij ij

Here, i and j index the jth member of the ith sibship, a

is the grand mean, z is a vector of observed covariates
(centered about their means), and b is a corresponding
vector of unknown fixed regression coefficients. Ci is a
Normally distributed random effect shared by all mem-
bers of the ith sibship, and Dij is a binary disease indi-
cator (0 p unaffected; l p affected). In the conventional
terminology of generalized linear models (McCullagh
and Nelder 1989), hij is the linear predictor, the error
structure is Bernoulli, and the link function is logit. The
inclusion of the Ci random effects in the linear predictor
makes this a generalized linear mixed model (GLMM)
(Breslow and Clayton 1993; Burton et al. 1999).

In a typical simulation, we sample 1,000 sibships,
each of size five. We generate two observed covariates.
One is binary [ ], but, prior to anal-z ∼ Bernoulli(0.3)b

ysis, it is centered about its mean by subtracting 0.3.
The other is continuous [ ]. We setz ∼ N(0,0.04) a pq

, , , and . Under this2�5 b p �0.4 b p 0.3 j p 4.5b q C

model, most (nearly 90%) sibships that are generated
have no affected members, but we ascertain only sib-
ships with at least one affected member. We simulate
complete ascertainment by sampling all such sibships.

The ascertainment mechanism will preferentially se-
lect sibships that, by chance, have a high value of the
random effect Ci—that is, values of Ci that are sampled
from the upper tail of the N(0,4.5) distribution. This
has two effects. First, the mean of the true Ci values in
the ascertained subpopulation is not 0 but, in this par-
ticular case, 2.76. Second, the variance of the true Ci

values in the sample is not 4.5 but 2.42. On the other
hand, perhaps counterintuitively, the empirical distri-
bution of the sampled Ci values remains approximately

Normal. The mean of the true hij values in the ascer-
tained sample is �2.23.

It is important to emphasize that the true values of
the sampled Ci random effects and the hij linear predic-
tors to which we refer are the quantities that are gen-
erated by the simulation procedure, not the correspond-
ing quantities that are estimated during the process of
model fitting. Like the true stratum-specific prevalences
in example 1, the true individual Ci and hij values are
unaffected by the process of ascertainment, but, for the
reasons we specify, their marginal distributions are very
different in the ascertained sample and in the original
population.

We focus attention on estimates of the grand mean
(a) and the variance ( ) of the Ci random effects. If2jC

our adjustment for ascertainment returned general pop-
ulation values, then, given that the fixed covariates are
centralized about their means, one would expect an as-
certainment-adjusted analysis to return the simulated
values: and (or, to be more precise,2a p �5 j p 4.5C

�4.98 and 4.38, which, in this particular case, are the
empirical mean of the true hij values and the empirical
variance of the true Ci values in the original simulated
population prior to ascertainment). On the other hand,
if an ascertainmnet-adjusted analysis returned estimates
of true parameter values in the ascertained subpopu-
lation, one would expect the estimated grand mean ( )ã

to reflect the true mean of the hij in the ascertained
sample (�2.23) and to reflect the true variance of2j̃C

the Ci values in the sample (2.42). In the complete ab-
sence of any adjustment for ascertainment, one would
expect a marked overestimate of a, which would have
the effect of making familial “clusters” of affected in-
dividuals seem unsurprising and would therefore lead
to a marked underestimate of .2jC

Analysis was based on the Gibbs sampling methods
for clustered binary responses, which we have described
elsewhere (Burton et al. 1999). An adjustment for as-
certainment was introduced by dividing the uncondi-
tional Bernoulli likelihood by the probability of ascer-
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tainment on the basis of the parameters of the model.
This adjustment was implemented in WinBUGS using
the “ones trick” (Spiegelhalter et al. 2000), which in-
troduces a Metropolis-Hastings step equivalent to that
used in the simple model detailed in Appendix B. This
can be viewed as being an Markov chain Monte Carlo
analogue of the likelihood-based adjustment for com-
plete ascertainment described by Elston and Sobel
(1979).

In the event, without adjustment for ascertainment,
the estimated values were and 2˜ã p �0.897 j pC

, which are both biased in the expected directions.0.007
Having adjusted for ascertainment, the estimated values
were (SE 0.12) and (SE 0.36).2˜ã p �2.39 j p 2.45C

These latter estimates reinforce the message that our
ascertainment adjustment returns estimates of true pa-
rameter values in the ascertained subpopulation (a p

and ), not in the general population2�2.23 j p 2.42C

( and ). As before, despite carrying2a p �4.98 j p 4.38C

out a wide range of different simulations, we found no
case in which these conclusions were contradicted.

It has already been shown that GLMMs of this class
generate consistent parameter estimates for correlated
binary data (Burton et al. 1999). Nevertheless, to check
that our basic model generates sensible estimates in this
particular setting, we fitted a GLMM (without ascer-
tainment adjustment) to the full original population (as
it was prior to ascertainment). This returned the esti-
mates (SE 0.092) and (SE 0.284).2˜ã p �4.96 j p 4.30C

Discussion

In addressing the question of whether ascertainment-
adjusted parameters estimates reflect true values in the
sample or in the population from which the sample was
ascertained, we have shown that two different situations
exist. If one is estimating a parameter that is itself un-
affected by the ascertainment, the true values in the sam-
ple and in the original population will be the same, and
inferences apply to either population. On the other hand,
if the true value of a parameter of interest differs between
the general population and the ascertained subpopula-
tion, an analysis based on the ascertained subpopulation
will return an estimate of the true parameter value in
the sample, not in the original population. The situation
in which such an eventuality is most likely to occur is
when the parameter of interest is the marginal expec-
tation of a parameter across a number of strata. If this
is so, and if the ascertainment influences the marginal
distribution of strata (as it almost always will do if stra-
tum membership is related to the risk of affectation),
then parameter values will differ between the ascertained
subpopulation and the original population. In such a
situation, a standard ascertainment-adjusted analysis

will estimate parameter values in the ascertained sample,
not in the original population.

This has important implications for studies of com-
plex diseases. Given that many of the etiological deter-
minants of most complex diseases are unknown, it is
safest to assume that, after taking account of determi-
nants that are known, there could remain potentially
strong risk stratification within the general population,
based on unknown determinants. If an ascertained sub-
population is now drawn, high-risk strata will be ov-
errepresented in the sample, and an ascertainment-ad-
justed estimate of prevalence based on that sample will
reflect the higher true prevalence in the ascertained sub-
population and not that in the general population. Sim-
ilarly, if scientific interest focuses on the relative risk
associated with an observed determinant—for example,
the ratio of risks associated with two different alleles
at a genotyped locus—and the true relative risk asso-
ciated with this determinant varies across different
strata defined by other unknown determinants (reflect-
ing, for example, epistatic or gene-environment inter-
action), the same phenomenon will occur. The ascer-
tainment-adjusted relative risk will reflect the true
relative risk in the ascertained subpopulation and not
that in the original population.

In consequence, even when what are thought to be
appropriate ascertainment adjustments have been ap-
plied, it is possible that two samples ascertained in dif-
ferent ways from the same underlying population will
generate different estimates for what might appear to
be the same parameter. Furthermore, despite adjustment
for ascertainment, a parameter estimate based on a ran-
domly sampled population need not be the same as its
equivalent from an ascertained population. This has ob-
vious implications not only for the interpretation of
individual studies but also for the pooling of estimates
within a meta-analysis. Another way of expressing the
implications of this article is that it is simply not
possible, using a conventional ascertainment adjust-
ment, to consistently estimate a general population
parameter in the presence of substantial latent etiolog-
ical heterogeneity.

That there can be misunderstanding about these is-
sues is in part a reflection of the fact that many of the
traditional methods of adjustment for ascertainment
(Fisher 1934; Li and Mantel 1968; Elston and Sobel
1979) were developed at a time when most of the con-
ditions of interest could reasonably be assumed to be
caused by one principal determinant (genetic or envi-
ronmental). Under such circumstances, once one had
modeled the effect of the determinant of interest and
had incorporated an appropriate adjustment for ascer-
tainment, any residual stratification consequent on
unobserved determinants (of risk or of relative risk)
would have been weak or absent. Many of the classical
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papers introducing ascertainment adjustments (Fisher
1934; Li and Mantel 1968) address the calculation of
segregation ratios, so as to determine whether observed
data are consistent with a recessive mode of inheritance
attributable to a single gene. Under such circumstances,
the concept that there could be latent stratification in
the population such that, in some strata, the prevalence
of affection (and therefore the “true” segregation ratio)
is really 0.1, whereas in others it is 0.5, would have
made little or no sense. However, given the current focus
on complex diseases, in which unobserved stratification
is likely to be the rule rather than the exception, it seems
safer to assume that inferences pertain to parameter
values in the ascertained subpopulation and not in the
general population from which the ascertained subpo-
pulation was drawn.

To finish, we reexamine the historical perspective. Al-
though we would argue that the specific issue we address
has received inadequate attention in the statistical ge-
netics literature, we acknowledge that Greenberg and
Hodge (1985) highlight the distinction between esti-
mating population- and sample-based parameters. They
describe an ascertainment-adjusted segregation analysis
model for a recessive disease with a gene frequency q
and a frequency R of sporadic cases in the general pop-
ulation. They focus on the estimation of a: the data set
(sample) proportion of families in which the disease is
genetic. They find marked biases in the estimates of q
and R and conclude that “[t]he fact that a can be more
accurately estimated than q or R may be due to the fact
that it is a data set–based parameter, not a population-
based one.” However, no explanation is provided as to
why that might, in general, be so. Our article provides
an explanation. Furthermore, we note that a different,
although related, issue was raised by Fisher in his sem-
inal paper in 1934. In trying to determine what estimate
of p′ (“the probability of an affected individual being
bought into the record”) to insert into his formula for
the variance of the segregation ratio, in a situation in

which there was marked heterogeneity in the probability
of ascertainment in different subsets of the ascertainable
population, he noted that “the estimate required is the
true probability of ascertainment averaged, if hetero-
geneous, on the numbers of defectives ascertained, and
not on the numbers available for ascertainment” (Fisher
1934).

Finally, we have very recently become aware of im-
portant preliminary work (Pfeiffer et al. 2000) that is
relevant to what we have written. Example 2 differs
from example 1, in that the latent heterogeneity is mod-
eled in full by a parameter ( ) that is included in the2jC

model. Consequently, although our Gibbs sampling–
based model returns sample-based parameter estimates,
an alternative maximum likelihood–based model could
be envisaged that would return approximate popula-
tion-based parameter estimates (Pfeiffer et al. 2000).
However, when the latent heterogeneity is not modeled
at all, as in example 1, or is modeled incompletely, as
will generally be the case in studies of complex diseases,
estimates will always and in principle be sample based
and not population based.
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Appendix A

Adjusting for Complete Ascertainment: the Li and Mantel (1968) Estimator

We wish to estimate the prevalence of a disease D, given information on a population of sibships (each of size
three) that fall into four distinct risk strata, 1–4. Stratum membership is the only determinant of risk for the disease.
We denote the true prevalence of D in the four strata as p1...p4. We require stratum-specific prevalence estimates
( ), but our data are restricted to sibships with at least one affected member. Ascertainment is complete—thatˆ ˆp ...p1 4

is, all affected individuals are ascertained, and the sample consists of all sibships with at least one affected member.
Denote by njk the number of sibships that are in risk stratum j and have k affected members. For , the numberk � 1
of such sibships is the same in the ascertained sample as in the original population.

Denote by njA the total number of sibships in stratum j in the ascertained sample ( ) and byn p n � n � njA j1 j2 j3

njP the number in the original population ( ). Denote by mjA and mjP the equivalent numbern p n � n � n � njP j0 j1 j2 j3
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of individuals: and . Finally, denote by ajA (or, equivalently, ajP) the number of affectedm p 3 # n m p 3 # njA jA jP jP

individuals in the sample (or in the original population): .a p a p (1 # n ) � (2 # n ) � (3 # n )jA jP j1 j2 j3

Given pj, the probability that any one sibship in stratum j would have been ascertained is . In the31 � (1 � p)j
absence of knowledge of nj0, but given pj, the total number of sibships in stratum j in the original general population
can therefore be inferred to have been

3[ ]n p n / 1 � (1 � p) . (1)jP jA j

The expected number of affected individuals in stratum j is

E(a ) p 3 # n # p . (2)jA jP j

The expected number of sibships in stratum j with exactly one affected member is

1 2[ ]E(n ) p n # 3 # p # (1 � p) . (3)j1 jP j j

The expected number of children (affected or not) in the ascertained sample can be obtained by rearranging equation
(1) and multiplying by 3:

3[ ]E(m ) p 3 # n p 3 # n # 1 � (1 � p) . (4)jA jA jP j

Now, let us consider the following expression:

( ) ( )E a �E(n ) / E(m ) � E n . (5)[ ] [ ]jA j1 jA j1

Substituting in from equations (2), (3), and (4), this may be expanded to

1 2 3 1 2[ ] [ ] [ ]( (3 # n # p) � n # 3 # p # (1 � p) / 3 # n # 1 � (1 � p) � n # 3 # p # (1 � p) ){ } { }jP j jP j j jp j jp j j

1 2 3 1 2[ ] [ ] [ ]p p � p # (1 � p) / 1 � (1 � p) � p # (1 � p){ } { }j j j j j j

2 3 2 3[ ] { }p p # 1 � (1 � p) / 1 � (1 � p) � (1 � p) � (1 � p){ }j j j j j

2 2[ ] [ ]p p # 1 � (1 � p) / 1 � (1 � p) pp .{ }j j j j

But pj is the quantity we wish to estimate, and, if expectations are replaced by observed values, expression (5) can
be used to derive a simple estimator for pj: . We refer to this as the “Li-Mantel estimator.”p̂ p (a � n )/(m � n )j jA j1 jA j1

If one denotes , Li and Mantel (1968) show that an asymptotic variance estimate for is given byˆ ˆq̂ p (1 � p ) pj j j

.3 2 3 2ˆ ˆˆ ˆ ˆ ˆ[(p # q )/3] # [(1 � q ) /(1 � q � 3 # p # q )]/nj j j j j j jA

Appendix B

Adjusting for Complete Ascertainment

Gibbs Sampling–Based WinBUGS Model

Random Number Generating Seeds for Five Separate Analyses:
stratum 1 analysis 73741
stratum 2 analysis 73742
stratum 3 analysis 73743
stratum 4 analysis 73744
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all strata analysis 73745

Data for Five Separate Analyses:
stratum 1 analysis list(Npc(763,49,1));
stratum 2 analysis list(Npc(446,61,3));
stratum 3 analysis list(Npc(333,105,11));
stratum 4 analysis list(Npc(312,288,88));
all strata analysis list(Npc(1854,503,103))

Initial Values for P (Analysis Based on Three Independent Chains):
list(pp0.01);
list(pp0.2);
list(pp0.5);

Model:
model
{
#Calculate Binomial likelihoods associated with 1, 2, and 3 affected siblings in a sibship

like.sibship[1] !- 3*pow(p, 1)*pow((1-p),2);
like.sibship[2] !- 3*pow(p,2)*pow((1-p),l);
like.sibship[3] !- 1*pow(p,3);

#Calculate probability of ascertainment as a function of modeled prevalence parameter (p)
prob.asc!-(1 -(1-p)*(1-p)*(1-p));

#Model fitting loop
for(i in 1:3)
{

#Calculate conditional likelihoods by dividing likelihoods by probability of ascertainment
cond.like.sibship[i]!-like.sibship[i]/prob.asc;

#Combine conditional likelihood for sibships with i affected children across all sibships of that class
cond.like.total[i]!-pow(cond.like.sibship[i],N[i]);

#Fit model using a Metropolis Hastings step to deal with conditional likelihood (the “ones trick”)
ones[i]!-1;
ones[i]-dbern(cond.like.total[i]);
}

#Specify flat beta prior for p (uniform on the real line between 0 and 1)
p-dbeta(1,1);

}

Model Fitting

All of the WinBUGS analyses referred to in this article are based on three independent estimation chains run in
parallel. The three chains are initialized using different starting values. Chains are run for 10,000 iterations following
a discarded burn-in of 500 iterations. In every case, the chains exhibit good convergence and mixing. Vague priors
are used throughout (Burton et al. 1999).
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